MODELING STOCK RETURN VOLATILITY USING SAS TIME SERIES ECONOMETRICS

1. Overview

Client:

An asset management firm focused on U.S. technology sector ETFs

Objective:

To model and forecast return volatility for major tech stocks using SAS time series econometrics. The analysis aimed to support portfolio hedging decisions and enhance risk-adjusted performance metrics.

2. Background

High-frequency volatility in technology stocks poses a risk to portfolio returns, especially during market corrections. The client sought a statistically robust, time series-based forecasting model to inform dynamic risk allocation strategies. SAS was chosen for its stability, transparency, and strong econometric capabilities.

3. Data Summary

Dataset:

Daily adjusted closing prices for top 5 NASDAQ-100 technology stocks (e.g., AAPL, MSFT, NVDA, AMZN, GOOG)

Timeframe: January 2018 – December 2022 (1,250 trading days per stock)

Derived Variables:

Variable	Type	Description
Log_Return	Continuous	log for (Pt/Pt-1)\log(P_t / P_{t-1}), daily return series
Squared_Return	Continuous	Proxy for conditional variance
VIX_Index	Exogenous	Used for model comparison and validation

4. Methodology

Software Used:

SAS Workflow:

1. Preprocessing:

- Imported price series via PROC IMPORT
- Calculated log returns in DATA step
- o Conducted stationarity checks using PROC ARIMA (ADF test)

2. Univariate Modeling (ARIMA):

- Identified ARIMA structure using PROC ARIMA with identify, estimate, and forecast statements
- o Residual diagnostics to check for remaining autocorrelation

3. Volatility Modeling (GARCH):

- o Used PROC AUTOREG and PROC VARMAX for initial model calibration
- Final model in PROC AUTOREG:
- o proc autoreg data=tech returns;
- o model Log_Return = / garch=(q=1, p=1);
- o output out=Forecasts p=Predicted r=Residual h=Variance;
- o run;

4. Model Evaluation:

- Assessed AIC/BIC, Ljung-Box, and ARCH LM tests
- Plotted conditional variance over time
- o Compared forecasted volatility with VIX movements

5. Key Results

Stock	ARIMA Model	GARCH Coefficients	AIC	Observations
AAPL	ARIMA(1,0,1)	$\alpha = 0.09, \beta = 0.87$	- 5120	High volatility persistence ($\alpha+\beta > 0.95$)

NVDA	ARIMA(2,0,1)	$\alpha = 0.14, \beta = 0.81$	5034	Responds faster to volatility shocks
MSFT	ARIMA(1,0,1)	$\alpha = 0.11, \beta = 0.88$	- 5111	Stable with moderate mean reversion

Common Insights:

- All tech stocks showed high persistence in volatility
- GARCH(1,1) outperformed static volatility assumptions
- Conditional volatility spikes aligned with key market events (e.g., March 2020 COVID crash)

6. Visual Outputs (from SAS)

- Time series plots of log returns with GARCH volatility bands
- Conditional variance forecasts with market event overlays
- Residual ACF and PACF for model diagnostics
- Actual vs. forecasted volatility comparison with VIX trend

7. Deliverables

- Modular .sas code files for ARIMA and GARCH modeling
- Full econometrics report (22 pages), including:
 - Model selection rationale
 - Technical output with interpretation
 - Volatility risk insights for portfolio managers
- Risk analytics dashboard (5 slides) for CIO briefing:
 - Stock-wise volatility forecasts
 - Correlation with market indicators
 - Suggested allocation adjustments

8. Client Outcome & Application

• GARCH volatility forecasts integrated into daily VAR (Value at Risk) models

- Used in quarterly rebalancing decisions for tech-heavy ETFs
- Helped client improve Sharpe ratio by reallocating during high-volatility signals

9. Strategic Value Delivered

- Enabled forward-looking risk awareness based on econometric volatility models
- Supported quantitative risk budgeting in line with portfolio goals
- Delivered a scalable SAS solution with high interpretability and model transparency

