EFFECT OF INFLATION AND UNEMPLOYMENT ON CONSUMER SPENDING: A TIME SERIES ANALYSIS IN EXCEL

1. Background and Problem Statement:

A public policy analyst wanted to evaluate how macroeconomic indicators such as inflation and unemployment affect monthly consumer spending. The primary challenge was conducting a **time series regression analysis using only Excel**, without external statistical software, and presenting the results in a clear, report-ready format. The analysis aimed to help a nonprofit organization design more informed economic intervention programs.

2. Objectives:

- Analyze the influence of inflation rate and unemployment rate on consumer spending over time
- Build and interpret a multiple regression model using Excel
- Evaluate whether the relationship changes over the 3-year period (2021–2023)
- Perform diagnostic checks for autocorrelation and linearity using Excel formulas and charts

3. Methodology:

3.1 Dataset Overview

- Time Period: January 2021 to December 2023 (36 observations)
- Variables:
 - o Consumer Spending (INR crore, monthly total spending)
 - o Inflation Rate (monthly % change in CPI)
 - Unemployment Rate (monthly %, from CMIE)

3.2 Data Preparation in Excel

- Data imported in .xlsx format
- Missing values handled using linear interpolation
- Created a time variable (1 to 36) for plotting and residual analysis

3.3 Model Estimation

- Used Excel Data Analysis Toolpak → Regression
- Dependent Variable: Consumer Spending
- Independent Variables: Inflation Rate, Unemployment Rate
- Extracted and interpreted: coefficients, standard error, R², and significance values
- Forecast column created using predicted Y values
- Calculated residuals (=Actual Predicted) for model diagnostics

3.4 Autocorrelation Check

- Manually calculated lag-1 residuals using =OFFSET()
- Plotted residuals vs. lagged residuals
- Observed visual trend to assess serial correlation
- Computed Durbin-Watson approximation: =SUMXMY2(Residuals, Lag1Residuals)/SUMSQ(Residuals)

4. Results and Interpretation:

4.1 Regression Output

Variable	Coefficient	p- Value	Interpretation
Intercept	945.2	0.000	Base spending if inflation and unemployment = 0
Inflation_Rate	-8.3	0.017	1% rise in inflation decreases spending by ₹8.3 Cr
Unemployment_Rate	-11.6	0.004	1% rise in unemployment lowers spending by ₹11.6 Cr

- $R^2 = 0.74 \rightarrow 74\%$ of variation in spending explained
- Adjusted $R^2 = 0.72$
- Both independent variables statistically significant at 5%

4.2 Diagnostics

• Residuals showed no major curvature → linearity assumed valid

- Lag plot showed a mild positive trend, indicating **possible autocorrelation**
- DW statistic approximated to 1.55 → moderate autocorrelation risk

5. Excel Deliverables:

- Data sheet with all raw and cleaned data
- Regression sheet with input, output, and formulas
- Chart sheet with:
 - Actual vs. Predicted Spending
 - o Residual vs. Lagged Residual Scatterplot
 - o Line chart of actual spending vs. macroeconomic variables over time
- Summary sheet with findings and interpretation

6. Recommendations:

- Government stimulus packages should be timed with spikes in inflation and unemployment, as they directly suppress spending
- Suggested inclusion of dummy variables for festival months or COVID waves in future models
- Model can be extended with lagged variables or logarithmic transformations for improved forecasting accuracy

7. Stakeholder Relevance:

Academic Use:

- Demonstrates multiple regression using time-series economic indicators
- Shows how diagnostic checks like autocorrelation can be approximated in Excel
- Good candidate for classroom discussion on model limitations in Excel-based econometrics

Corporate/Policy Use:

 Helps NGOs, public sector planners, and small think tanks build economic models without expensive software • Provides actionable insights on how inflation and employment shifts influence household spending

