DEVELOPING A REAL-TIME INVENTORY FORECASTING DASHBOARD USING R AND SHINY: A CASE STUDY FOR A U.S. AUTOMOTIVE PARTS RETAIL CHAIN

1. Background

A regional auto parts retail chain operating in Illinois and Indiana struggled with decentralized inventory management and delayed stock updates. Warehouses faced recurring problems of overstocking slow-moving parts and stockouts of high-demand SKUs. The client required a real-time inventory dashboard in R to visualize inventory levels, forecast future demand, and automate replenishment recommendations across multiple outlets.

2. Objective

- To create an interactive R Shiny dashboard for visualizing current inventory by location and SKU
- To generate short-term forecasts for high-velocity SKUs
- To build automated replenishment triggers based on predicted shortfalls and stock turn ratios

3. Data Used

Source: Retail POS and inventory ERP exports

Structure:

- Daily sales and stock levels from 23 store locations
- Time Period: Jan 2021 Jan 2024
- Fields: SKU, Location_ID, Date, Units_Sold, Stock_On_Hand, Lead_Time_Days, Reord er Point, Category

4. Modeling Methodology

4.1 Data Integration and Processing

• Unified sales and stock data using dplyr and lubridate

- Created SKU-Location combinations and indexed time series using xts
- Handled outliers and zero-sale days with rolling average smoothing

4.2 Forecasting Engine

- Implemented simple exponential smoothing (SES) for fast-moving SKUs
- For slow-movers, used a hybrid of moving average + reorder threshold logic

```
model_ses <- ses(ts_data, h = 14)
```

forecast_vals <- as.data.frame(forecast(model_ses))</pre>

4.3 Replenishment Logic

- Trigger alert if Forecasted Demand > Stock On Hand Reorder Point
- Auto-generate replenishment quantity:
- suggested_qty <- max(0, forecasted_demand current_stock + safety_stock)

4.4 Dashboard Development in Shiny

- Dashboard panels:
 - o Inventory Heatmap: Real-time stock per SKU by location
 - o Forecast Tab: 14-day demand projections
 - o Reorder Alert Tab: Color-coded urgency flags (green/yellow/red)
- Used plotly, reactable, and shinydashboard for interactive components

5. Results

KPI	Before (Manual System)	After (R Shiny Dashboard)
Stockouts per month (avg)	74	29
Overstock items (>30 days)	112	44
Replenishment planning time	6 hours/week	40 mins/week
Reorder compliance across stores	63%	91%

6. Interpretation and Recommendations

- The forecast engine captured **day-of-week patterns**, especially relevant for weekend peak demand
- Reorder alert system helped store managers act on predicted shortfalls in advance
- Recommended training junior staff on using dashboard filters and exporting reports
- Suggested syncing with **vendor APIs** for live lead time updates in next phase
- Recommended quarterly re-training of SES models using updated data

7. Reporting Output

- Live Dashboard URL (restricted access)
 - o Tabs for SKU Lookup, Forecasts, Alerts, and Settings
- **Documentation PDF** (18 pages)
 - User manual with screenshots
 - Inventory logic flowchart
 - Maintenance and support guidelines
- Forecast Script Repository
 - o forecast engine.R
 - o generate dashboard data.R
 - o shiny ui.R and shiny server.R for deployment

8. Business Outcome

- Achieved ~60% drop in stockouts for high-demand brake pad and battery SKUs
- Saved 30+ man-hours per month in inventory planning
- Real-time dashboard helped corporate HQ track all locations without needing daily email updates
- Identified 8 deadstock SKUs and recommended discontinuation to finance team