Fraud Detection and Transaction Pattern Mining in R: A Case Study for a U.S. Fintech Startup

1. Background

A New York-based fintech startup offering virtual debit cards and digital wallets experienced increasing fraud complaints and suspicious activity reports. Manual fraud detection was time-consuming and prone to oversight. The client sought a pattern-based fraud detection system that could flag anomalous transactions for review without relying on predefined rules.

2. Objective

- To identify suspicious transaction patterns using unsupervised anomaly detection
- To segment transaction behavior by customer profile using clustering
- To reduce the burden on manual fraud teams by prioritizing high-risk flags

3. Data Used

Source: Encrypted transaction logs exported from the company's internal payment gateway

Structure:

- 1.4 million transaction records over 6 months
- Key
 fields: Transaction_ID, User_ID, Amount, Merchant_Category, Time_of_Day, Location,
 Device ID, Failed Attempts, Txn Volume Past 24hr, Account Age Days

4. Modeling Methodology

4.1 Data Cleaning and Feature Engineering

- Used dplyr, lubridate, and stringr for transformations
- Created composite features:
 - o Avg Txn Amount Per Day
 - o Merchant Frequency Score
 - o Distance Between Txn Locations using geolocation API
- Normalized all numeric features using scale()

4.2 Clustering for Behavior Profiling

- Applied **DBSCAN** to identify dense regions of normal activity
- Flagged points outside dense clusters as potential anomalies

library(dbscan)

db result <- dbscan(scaled data, eps = 0.5, minPts = 10)

4.3 Isolation Forest for Anomaly Detection

- Used isotree package to score anomalies
- Combined with clustering output for dual-layer detection

library(isotree)

```
iso_model <- isolation.forest(scaled_data)
scores <- predict(iso_model, scaled_data)
anomaly flags <- ifelse(scores > 0.65, 1, 0)
```

4.4 Rule Layer (Hybrid)

- Layered post-processing rules:
 - Flag transactions with Amount > 90th percentile AND New Device = TRUE
 - Flag repeat micro-transactions in <30 min with changing Device IDs

5. Results

Metric	Before (Manual-Only)	After (R-based System)
Monthly flagged transactions	~1,000	~3,800
Manual false positives	77%	28%
Avg. fraud resolution time	3.2 days	0.9 days
Precision of anomaly model	_	0.82

6. Interpretation and Recommendations

• **Isolation Forest** outperformed DBSCAN alone in identifying irregular amounts from new devices

- Hybrid model reduced noise by excluding consistent high-spend users from unnecessary alerts
- Suggested updating clustering model every 15 days to accommodate evolving user behavior
- Recommended integrating alert system with internal fraud dashboard (e.g., Looker/Power BI)
- Added explainability layer showing top contributing features per flag (Shapley-style)

7. Reporting Output

- Fraud Analytics R Markdown Report (30 pages)
 - Heatmaps of flagged transactions by hour
 - o Cluster profiles: normal vs. anomalous users
 - Visual flowcharts of anomaly scoring logic
- Interactive R Shiny Prototype
 - o Upload new transaction files → Auto-flag anomalies
 - o Tabs: Risk Scoring, Visualization, Export CSV
- Code Modules Delivered
 - o clean_transaction_data.R, fraud_flag_model.R, clustering_logic.R, shiny_ui_serv er.R

8. Business Outcome

- Reduced fraud review team's workload by 60%
- Flagged \\$187,000 worth of suspicious transactions in the first 45 days
- Detected and reported 8 fraudulent merchant rings using pattern clusters
- Prototype extended to mobile wallet division in Q2 rollout