DAILY ELECTRICITY CONSUMPTION FORECASTING FOR A MANUFACTURING PLANT USING EXCEL

1. Background and Problem Statement:

A small-scale manufacturing plant located in Gujarat, India, was experiencing erratic daily electricity usage that affected its operational efficiency and budgeting. The plant management sought a simple forecasting model in Excel to predict future electricity consumption and improve decisions related to equipment scheduling, load balancing, and energy procurement planning.

2. Objectives:

- Analyze 180 days of historical electricity consumption data
- Build an Excel-based daily consumption forecast model using double exponential smoothing
- Identify consumption trends, seasonal spikes, and operational inefficiencies
- Develop a dynamic forecasting dashboard and performance evaluation tool

3. Methodology:

3.1 Dataset Description

- Time Period: 01 July 2023 to 27 December 2023 (180 days)
- Variable: Electricity consumption per day in kWh
- Data Format: Excel file with columns: Date, Consumption (kWh)

3.2 Data Cleaning and Preparation in Excel

- Removed weekends from the dataset using a =TEXT(Date,"ddd") filter
- Replaced missing values with 3-day moving average using
- =AVERAGE(B2:B4)
- Created two helper columns for trend and level smoothing

3.3 Forecasting Method

Double Exponential Smoothing (Holt's method) in Excel:

• Level (L_t) and Trend (T_t) calculated recursively using:

- Level: = α * Current + (1α) * (Previous Level + Previous Trend)
- Trend: = β * (Current Level Previous Level) + (1β) * Previous Trend
- Forecast: = Previous Level + Previous Trend
- Used smoothing constants: $\alpha = 0.5$, $\beta = 0.3$
- Added user-controllable inputs for α and β via named ranges

4. Results and Visualizations

4.1 Key Metrics

- Mean Absolute Error (MAE): 41.3 kWh
- Root Mean Squared Error (RMSE): 53.8 kWh
- MAPE: 7.2%
- Notable daily spikes observed on Mondays and after national holidays

4.2 Charts and Dashboards

- Line Chart: Actual vs Forecasted consumption
- Forecast Accuracy Panel: MAE, MAPE, RMSE in KPI tiles
- Weekly View: Sparkline summary for 6-day operational blocks
- Scenario Chart: Projected consumption under 5% production increase

5. Excel Deliverables

- Forecast Model Sheet with editable α and β cells
- Error Metrics Sheet with auto-calculating forecast performance
- Consumption Chart Sheet with dual-line graph for visual tracking
- Scenario Simulation Sheet for adjusting future assumptions

6. Recommendations

- Shift heavy production to early weekdays when electricity rates are lower
- Use Excel dashboard for weekly operational briefings
- Increase smoothing factor β slightly to account for production trend variation

• Consider extending model to include production volume as a secondary variable

7. Stakeholder Relevance

Academic Use:

- Demonstrates double exponential smoothing implementation in Excel without VBA
- Can be used to teach forecasting error metrics and parameter tuning

Corporate Use:

- Supports real-time utility cost management
- Enables energy planning without complex software tools

