SAFETY STOCK OPTIMIZATION WITH SIMULATION-BASED INVENTORY MODELING IN R: A CASE STUDY FOR A U.S. APPAREL E-COMMERCE BRAND

1. Background

A fast-growing U.S. e-commerce apparel company struggled with inventory shortages during flash sales and holiday events. Their standard safety stock formula based on average demand often failed during high-variance weeks. The operations team needed a smarter model to simulate stockout risks under various demand and lead time conditions using R.

2. Objective

- To build a Monte Carlo simulation model in R to estimate inventory requirements
- To compute safety stock thresholds based on service level targets and demand variability
- To integrate simulation outputs into their seasonal buying plan

3. Data Used

Source: Shopify sales data, supplier schedules, and fulfillment logs

Structure:

- Weekly sales records from Jan 2022 to Dec 2023 for 50 SKUs
- Fields: SKU_ID, Date, Units_Sold, Lead_Time_Days, Restock_Date, Sale_Week_Flag, Returns

4. Modeling Methodology

4.1 Demand and Lead Time Analysis

- Calculated mean and standard deviation of weekly demand using dplyr
- Identified lead time variability by analyzing Restock Date Order Date
- Created demand distribution assumptions per SKU (normal/lognormal based on Shapiro test)

4.2 Monte Carlo Simulation in R

• Simulated 10,000 demand scenarios per SKU using rnorm()

- Simulated variable lead times for each scenario using truncated normal distributions
- Defined stockout as Simulated Demand > Stock on Hand + Safety Stock

```
simulate_demand <- rnorm(10000, mean = mu_demand, sd = sd_demand)
simulate_lead <- rnorm(10000, mean = mu_lead, sd = sd_lead)
```

4.3 Safety Stock Formula (Simulation-Based)

- Safety Stock (SS) set at the percentile level of unmet demand that satisfies a service level (e.g., 95%)
- R code to calculate SS:
- safety stock <- quantile(simulated demand expected inventory, probs = 0.95)

4.4 Scenario Testing

- Ran simulations for sale vs. non-sale weeks
- Included return-adjusted demand forecasts for more accurate planning
- Compared simulation-based SS with historical stockout data

5. Results

SKU Type	Previous SS (units)	Simulated SS	Stockouts Reduced	Fulfillment Accuracy
Graphic T-shirts	220	310	↓ 41%	↑ 9.3%
Activewear Bottoms	160	190	↓ 34%	↑ 7.8%
Festival Jackets	280	360	↓ 52%	↑ 11.2%
Swimwear Tops	90	135	↓ 29%	↑ 6.1%

6. Interpretation and Recommendations

- Simulation-based safety stock provided more resilience during sales events
- Some high-return SKUs required extra buffer stock to accommodate reverse logistics
- Recommended SKU-specific safety stock policy, updated every quarter
- Suggested shifting from flat safety stock to dynamic service-level-based thresholds

• Shared insights with finance team to plan working capital during clearance cycles

7. Reporting Output

- R Markdown Report (26 pages):
 - Simulation distribution plots per SKU
 - Stockout risk bands by service level
 - Weekly order fill rate projections under different reorder strategies
- Excel Dashboard Export:
 - o Columns: SKU, Recommended SS, Current SS, Action Required
 - o Filters for product category, lead time variability, return rate
- Reusable Simulation Engine in R:
 - o inventory simulation.R with 3 key functions:
 - simulate demand profile()
 - estimate safety stock()
 - compare stockout risk()

8. Business Outcome

- Achieved 20–25% improvement in fulfillment accuracy during Black Friday–Cyber Monday
- Reduced urgent air-freight costs by 18% during peak season
- Used simulation insights in Q1 2024 to **negotiate better terms with third-party suppliers**
- Model adopted into the brand's seasonal planning workflow